Кріоконсервування мезенхімальних стовбурових клітин у складі макропористих матриць після передобробки сахарозою

Автор(и)

  • Natalia Trufanova Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-8718-7490
  • Olena Rogulska Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-4757-0241
  • Olga Semenchenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-1263-2772
  • Oleksii Mishchenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків
  • Oleksandr Petrenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-9554-8639

DOI:

https://doi.org/10.15407/cryo35.02.103

Ключові слова:

мезенхімальні стовбурові клітини, попередня обробка, сахароза, кріоконсервування, диметилсульфоксид, життєздатність, метаболічна активність, індуковане диференціювання, тканинно-інженерні конструкції

Анотація

Мезенхімальні стромальні/стовбурові клітини (МСК) привертають увагу науковців та спеціалістів різних галузей медицини завдяки високому імуномодуляторному та регенеративному потенціалу, здатності до мультилінійного диференціювання. Важливою умовою впровадження МСК у медичну та лабораторну практику є розробка ефективних технологій їхнього зберігання. Досліджено вплив попередньої обробки (передобробки) сахарозою на життєздатність, метаболічну активність та диференціювальний потенціал МСК після кріоконсервування у складі тривимірних (3D) макропористих матриць. Показано, що передобробка сахарозою підвищує ефективність кріоконсервування клітин у складі колагенових матриць шляхом повільного охолодження в присутності 10% ДМСО та сироватки. Життєздатність і метаболічна активність клітин після кріоконсервування у 3D матрицях була суттєво вище за умови передобробки сахарозою. Встановлено, що клітини після кріоконсервування зберігали здатність до проліферації та мультилінійного диференціювання. Доведено, що використання сахарози для передобробки клітин є перспективним підходом, який забезпечує зменшення кріопошкоджень під час кріоконсервування клітин у складі 3D матриць і відкриває нові можливості для підвищення ефективності зберігання тканинно-інженерних конструкцій.

Probl Cryobiol Cryomed. 2025; 35(2):105–12

Біографії авторів

Natalia Trufanova, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріобіохімії

Olena Rogulska, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріобіохімії

Olga Semenchenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріобіохімії

Oleksii Mishchenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріобіохімії

Oleksandr Petrenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріобіохімії

Посилання

Almaier S, Ronan LH, Frank S, et al. Cytoskeleton adaptation to stretchable surface relaxation improves adherent cryopreservation of human mesenchymal stem cells. Cryobiology [Internet]. 2024 Dec 14 [cited 2025 Feb 10]; 117: 104958. Available from: https://www.sciencedirect.com/science/article/pii/S0011224024001135 CrossRef

Al-Munajjed AA, Plunkett NА, Gleeson JP, et al. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique. J Biomed Mater Res Appl Biomater. 2009; 90(2): 584-91. CrossRef

Awan M, Buriak I, Fleck R, et al. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med. 2020; 15(3): 1463-91. CrossRef

Bathyam O, Batnyam SI, Suye S. Direct cryopreservation of adherent cells on an elastic nanofi ber sheet featuring a low glass-transition temperature. RSC Adv. 2017; 7: 51264-71. CrossRef

Campagnoli C, Roberts IA, Kumar S. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001; 98(8): 2396-402. CrossRef

Castro GR, Larson BK, Panilaitis B, Kaplan DL. Emulsan quantitation by nile red quenching fluorescence assay. Appl Microbiol Biotechnol. 2005; 67(6): 767-70. CrossRef

Costa PF, Dias AF, Reis RL, Gomes ME. Cryopreservation of cell/scaffold tissue-engineered constructs. Tissue Eng Part C Methods. 2012; 18(11): 852-8. CrossRef

Gloeckner H, Jonuleit T, Lemke HD. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye alamar blue. J Immunol Methods. 2001; 252(1-2): 131-8. CrossRef

Gurruchaga H, Saenz D, Burgo L, Garate A, et al. Cryopreservation of human mesenchymal stem cells in an allogeneic bioscaffold based on platelet rich plasma and synovial fluid. Sci Rep [Internet]. 2017 Nov 16 [cited 2025 Feb 14]; 7(1): 15733. Available from: https://www.nature.com/articles/s41598-017-16134-6

CrossRef

Hunt CJ. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus Med Hemother. 2019; 46(3): 134-49. CrossRef

Khoruzhenko AI. 2D- and 3D-cell culture. Biopolym Cell. 2011; 27(1): 17-24. CrossRef

Lin Z, Solomon KL, Zhang X, et al. In vitro evaluation of natural marine sponge collagen as a scaff old for bone tissue engineering. Int J Biol Sci. 2011; 7(7): 968-77. CrossRef

Mutsenko V, Barli A, Pezi T, et al. Me2SO- and serum-free cryopreservation of human umbilical cord mesenchymal stem cells using electroporation-assisted delivery of sugars. Cryobiology. 2019; 91: 104-14. CrossRef

Petrenko YA, Gorokhova NA, Tkachova EN, Petrenko AY. The reduction by peripheral blood lymphocytes and isolated mitochondria. Ukr Biochem J. 2005; 77(5): 100-5.

Petrenko YA, Ivanov RV, Petrenko AY, Lozinsky VI. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, grow than differentiation of human bone marrow mesenchymal stromal cells. J Mater Sci: Mater Med. 2011; 22(6): 1529-40. CrossRef

Petrenko YA, Katsen-Globa A, Meiser I, Ivanov RV, et al. Cryopreservation of mesenchymal stromal cells within wide-porous three-dimensional alginate-gelatin scaffolds. Probl Cryobiol Cryomed. 2013; 23(4): 351-5. Full Text

Petrenko YA, Rogulska OY, Mutsenko VV, Petrenko AY. A sugar pretreatment as a new approach to the Me2SO and xeno-free cryopreservation of human mesenchymal stromal cells. CryoLetters. 2014; 35 (3): 239-46. PubMed

Rogulska O, Trufanova N, Petrenko Y, et al. Generation of bone grafts using cryopreserved mesenchymal stromal cells and microporous collagen‐nanohydroxyapatite cryogels. J Biomed Mater Res B Appl Biomater. 2022; 110(2): 489-99. CrossRef

Volkova NA, Mazur SP, Kholodnyy VS, Petrenko AY. Skin stem cells as object for cryopreservation. 1. Skin stem reserve. Probl Cryobiol Cryomed. 2014; 24(1): 3-15. CrossRef

Xu X, Liu Y, Cui Z, et al. Effects of osmotic and cold shock on adherent human mesenchymal stem cells during cryopreservation. J Biotechnol. 2012; 162 (2-3): 224-31. CrossRef

Zuk PA, Ashjian P. Human adipose tissue is аsource of multipotent stem cells. Mol Biol Cell. 2002; 13(12): 4279-95. CrossRef

Downloads

Опубліковано

2025-11-23

Як цитувати

Trufanova, N., Rogulska, O., Semenchenko, O., Mishchenko, O., & Petrenko, O. . (2025). Кріоконсервування мезенхімальних стовбурових клітин у складі макропористих матриць після передобробки сахарозою. Проблеми кріобіології і кріомедицини, 35(2), 103–109. https://doi.org/10.15407/cryo35.02.103

Номер

Розділ

Кріоконсервування біологічних систем