Кріоконсервування клітин-похідних нервового гребеня

Автор(и)

  • Galyna Bozhok Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-4188-9286
  • Viktoriya Ustychenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0001-8524-6832
  • Olga Sydorenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-1340-7235
  • Yuliya Bozhkova Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0009-0001-6169-1146
  • Nataliya Alabedalkarim Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-4445-9230
  • Oleksandr Pakhomov Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-7494-654X
  • Dmytro Vvedenskyi Харківський національний університет імені В.Н. Каразіна, Харків
  • Andriy Shatillo ДУ «Інститут неврології, психіатрії та наркології НАМН України», Харків https://orcid.org/0000-0003-3630-6880
  • Tetyana Bondarenko Інститут проблем кріобіології і кріомедицини НАН України, м. Харків; Харківський національний університет імені В.Н. Каразіна, м. Харків https://orcid.org/0000-0002-5258-3741
  • Yevgen Legach Інститут проблем кріобіології і кріомедицини НАН України, м. Харків https://orcid.org/0000-0002-0656-4515

DOI:

https://doi.org/10.15407/cryo35.01.003

Ключові слова:

кріоконсервування, нервовий гребінь, 2D-культивування, 3D-культивування, клітини спінальних гангліїв, клітини пульпи зубів, меланоцити, шваннівські клітини

Анотація

Клітини-похідні нервового гребеня утворюються з нейроектодерми на ранніх стадіях ембріогенезу. Внаслідок епітеліо-мезенхімального переходу вони мігрують до периферичних структур та диференціюються у нейрони і глію периферичної нервової системи, меланоцити шкіри, клітини зубної пульпи, нейроендокринні клітини, хрящі та кістки черепа, а також у кілька інших фенотипів. Похідні нервового гребеня мають великий потенціал у регенеративній медицині. Кріоконсервування широко застосовується для довгострокового зберігання біологічного матеріалу, який в подальшому може бути використаний у клінічній практиці. У представленому огляді проаналізовано підходи до кріоконсервування клітин-похідних нервового гребеня, отриманих із різних джерел. Дослідження in vitro та in vivo демонструють успішність розроблених протоколів кріоконсервування різних клітин-похідних нервового гребеня, що дає можливість створення кріобанків та їх поширеного використання у клінічній практиці.

 

Probl Cryobiol Cryomed 2025; 35(1):313

Біографії авторів

Galyna Bozhok, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Viktoriya Ustychenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Olga Sydorenko, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Yuliya Bozhkova, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Nataliya Alabedalkarim, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Oleksandr Pakhomov, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Yevgen Legach, Інститут проблем кріобіології і кріомедицини НАН України, м. Харків

Відділ кріоендокринології

Посилання

Abe S, Fujita T, Takami Y. Disappearance of Langerhans cells and melanocytes aft er cryopreservation of skin. Br J Plast Surg. 1995; 48(6): 405-9. CrossRef

Alhashem Z, Camargo-Sosa K, Kelsh RN, Linker C. Trunk neural crest migratory position and asymmetric division predict terminal differentiation. Front Cell Dev Biol [Internet]. 2022 Jun 8 [cited 2025 Jan 30]; 10: 887393. Available from: https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2022.887393/full CrossRef

Ali S, Bozhok G. Cryopreservation of multicellular spheroids derived from primary culture of newborn piglet spinal ganglion cells. Probl Cryobiol Cryomed. 2019; 29(4): 354-64. CrossRef

Ali S, Moiseieva N, Bozhok G. Cryopreservation of cell culture derived from dorsal root ganglia of neonatal pigs. Probl Cryobiol Cryomed. 2020; 30(2): 158-68. CrossRef

Andersen ND, Monje PV. Isolation, culture, and cryopreservation of adult rodent Schwann cells derived from immediately dissociated teased fibers. Methods Mol Biol. 2018; 1739: 49-66. CrossRef

Andersen ND, Srinivas S, Piñero G, Monje PV. A rapid and versatile method for the isolation, purification and cryogenic storage of Schwann cells from adult rodent nerves. Sci Rep [Internet]. 2016 Aug 23 [cited 2025 Jan 30]; 6: 31781. Available from: https://www.nature.com/articles/srep31781 CrossRef

Bez A, Corsini E, Curti D, et al. Neurosphere and neurosphere-forming cells: morphological and ultrastructural characterization. Brain Res. 2003; 993(1-2): 18-29. CrossRef

Boroujeni S, Koontz A, Tseropoulos G, et al. Neural crest stem cells from human epidermis of aged donors maintain their multipotency in vitro and in vivo. Sci Rep [Internet]. 2019 Jul 5 [cited 2025 Jan 30]; 9(1): 9750. Available from: https://www.nature.com/articles/s41598-019-46140-9 CrossRef

Вozhok GA, Sidorenko OS, Plaksina EM, et al. Neural differentiation potential of sympathoadrenal progenitors derived from fresh and cryopreserved neonatal porcine adrenal glands. Cryobiology. 2016; 73(2): 152-61. CrossRef

Burns AJ, Goldstein AM, Newgreen DF, et al. White paper on guidelines concerning enteric nervous system stem cell therapy for enteric neuropathies. Dev Biol. 2016; 417(2): 229-51. CrossRef

Cai X, Li P, Chen B, et al. Eff ect of high-voltage electrostatic fi eld on cryopreservation of human epidermal melanocytes. E3S Web of Conferences [Internet]. 2021 Jan 27 [cited 2025 Jan 30]; 233; 02039. Available from: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/09/e3sconf_iaecst20_02039.pdf CrossRef

Cao W, Li L, Tran B, et al. Extensive hair shaft growth aft er mouse whisker follicle isolation, cryopreservation and transplantation in nude mice. PLoS One [Internet]. 2015 Dec 30 [cited 2025 Jan 30]; 10(12): e0145997. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145997 CrossRef

Cheng H, Han Y, Zhang J, et al. Effects of dimethyl sulfoxide (DMSO) on DNA methylation and histone modification in parthenogenetically activated porcine embryos. Reprod Fertil Dev. 2022; 34(8): 598-607. CrossRef

Cichorek M, Wachulska M, Stasiewicz A. Heterogeneity of neural crest-derived melanocytes. Open Life Sciences. 2013; 8(4): 315-30. CrossRef

Compton CC, Warland G, Kratz G. Melanocytes in cultured epithelial graft s are depleted with serial subcultivation and cryopreservation: implications for clinical outcome. J Burn Care Rehabil. 1998; 19(4): 330-6. CrossRef

Cui ZK, Li SY, Liao K, et al. Characteristics of neural growth and cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel culture versus conventional culture. Neural Regen Res. 2021; 16(9): 1856-64. CrossRef

Dawes JHP, Kelsh RN. Cell fate decisions in the neural crest, from pigment cell to neural development. Int J Mol Sci [Internet]. 2021 Dec 16 [cited 2025 Jan 30]; 22(24): 13531. Available from: https://www.mdpi.com/1422-0067/22/24/13531 CrossRef

Deshpande K, Saatian B, Martirosian V, et al. Isolation of neural stem cells from whole brain tissues of adult mice. Curr Protoc Stem Cell Biol [Internet]. 2019 Feb 5 [cited 2025 Jan 30]; 49(1): e80. Available from: https://currentprotocols.onlinelibrary.wiley.com/doi/10.1002/cpsc.80 CrossRef

Driskell RR, Clavel C, Rendl М, et al. Hair follicle dermal papilla cells at a glance. J Cell Sci. 2011; 124(8):1179-82. CrossRef

Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014; 12: 207-18. CrossRef

Fansa H, Lassner F, Kook PH, et al. Cryopreservation of peripheral nerve grafts. Muscle Nerve. 2000; 23(8): 1227-33. CrossRef

Fernandes KJ, McKenzie IA, Mill P, et al. A dermal niche for multipotent adult skin-derived precursor cells. Nat Cell Biol. 2004; 6(11): 1082-93. CrossRef

Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters. 2004; 25: 375-88. CrossRef

Gho CG, Schomann T, de Groot SC, et al. Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology. 2016; 68(5): 1849-58. CrossRef

Gilbert SF. Developmental biology. 6th edition; Sunderland, USA: Sinauer Associates; 2000; 709 p.

Gil-Perotín S, Duran-Moreno M, Cebrián-Silla A, et al. Adult neural stem cells from the subventricular zone: a review of the neurosphere assay. Anat Rec. 2013; 296: 1435-52. CrossRef

Giraldo E, Bonilla P, Mellado M, et al. Transplantation of human-fetal-spinal-cord-derived NPCs primed with a polyglutamate-conjugated Rho/ROCK inhibitor in acute spinal cord injury. Cells [Internet]. 2022 Oct 20 [cited 2025 Jan 30]; 11(20): 3304. Available from: https://www.mdpi.com/2073-4409/11/20/3304 CrossRef

González Porto SA, Domenech N, González Rodríguez A, et al. The addition of albumin improves Schwann cells viability in nerve cryopreservation. Cell Tissue Bank. 2018; 19(4): 507-17. CrossRef

Gurok U, Steinhof C, Lipkowitz B, et al. Gene expression changes in the course of neural progenitor cell diferentiation. J Neurosci. 2004; 24: 5982-6006. CrossRef

Hanslick JL, Lau K, Noguchi KK, et al. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system. Neurobiol Dis. 2009; 34: 1-10. CrossRef

Heumüller-Klug S, Maurer K, Tapia-Laliena MÁ, et al. Impact of cryopreservation on viability, gene expression and function of enteric nervous system derived neurospheres. Front Cell Dev Biol [Internet]. 2023 Jun 12 [cited 2025 Jan 30]; 11: 1196472. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10291272/pdf/fcell-11-1196472.pdf CrossRef

Hiramatsu S, Morizane A, Kikuchi T, et al. Cryopreservation of induced pluripotent stem cell-derived dopaminergic neurospheres for clinical application. J Parkinsons Dis. 2022; 12(3): 871-84. CrossRef

Hirasé Y, Kojima T, Uchida M, et al. Cryopreserved allogeneic vessel and nerve grafts: hindlimb replantation model in the rat. J Reconstr Microsurg. 1992; 8(6): 437-43, discussion 445-6. CrossRef

Huynh N, Le SH, Doan VN, et al. Simplified conditions for storing and cryopreservation of dental pulp stem cells. Arch Oral Biol. 2013; 84: 74-81. CrossRef

Kajiura S, Mii S, Aki R, et al. Cryopreservation of the hair follicle maintains pluripotency of nestin-expressing hair follicle-associated pluripotent stem cells. Tissue Eng Part C Methods. 2015; 21(8): 825-31. CrossRef

Kajiura S, Mii S, Aki R, et al. Protocols for cryopreservation of intact hair follicle that maintain pluripotency of nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells. Methods Mol Biol. 2016; 1453: 173-8. CrossRef

Krispin S, Nitzan E, Kalcheim C. The dorsal neural tube: a dynamic setting for cell fate decisions. Dev Neurobiol. 2010; 70(12): 796-812. CrossRef

Kruger GM, Mosher JT, Bixby S, et al. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002; 35: 657-69. CrossRef

Lee SY, Huang GW, Shiung JN, et al. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs. 2012; 196(1): 23-33. CrossRef

Leonard CE, Taneyhill LA. The road best traveled: neural crest migration upon the extracellular matrix. Semin Cell Dev Biol. 2020; 100: 177-85. CrossRef

Li HY, Say EH, Zhou XF. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cells. 2007; 25(8): 2053-65. CrossRef

Li R, Walsh P, Truong V, et al. Differentiation of human iPS cells into sensory neurons exhibits developmental stage-specific cryopreservation challenges. Front Cell Dev Biol [Internet]. 2021 Dec 14 [cited 2025 Jan 30]; 9: 796960. Available from: https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2021.796960/full CrossRef

Ma XH, Shi Y, Hou Y, et al. Slow-freezing cryopreservation of neural stem cell spheres with different diameters. Cryobiology. 2010; 60: 184-91. CrossRef

Mason PW, Attema BL, DeVries GH. Isolation and characterization of neonatal Schwann cells from cryopreserved rat sciatic nerves. J Neurosci Res. 1992; 31(4): 731-44. CrossRef

Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med. 2020; 9(3): 328-41. CrossRef

Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis from neural crest cells: molecular mechanisms in the formation of cranial nerves and ganglia. Front Cell Dev Biol [Internet]. 2020 Aug 7 [cited 2025 Jan 30]; 7(8): 635. Available from: https://www.frontiersin.org/journals/cell-and-developmentalbiology/articles/10.3389/fcell.2020.00635/full CrossRef

Meneghel J, Kilbride P, Morris GJ. Cryopreservation as a key element in the successful delivery of cell-based therapies a review. Front Med. 2020 [cited 2025 Jan 30]; 7: 592242. Available from: https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2020.592242/pdf CrossRef

Motohashi T, Aoki H, Chiba K, et al. Multipotent cell fate of neural crest-like cells derived from embryonic stem cells. Stem Cells. 2007; 25(2): 402-10. CrossRef

Nagoshi N, Shibata S, Kubota Y, et al. Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell. 2008; 2(4): 392-403. CrossRef

Novikova OY, Bondarenko TP. Characteristics of native and cryopreserved culture of dermal papilla of newborn rabbits vibrissa. Bulletin of Problems Biology and Medicine, 2019; (3): 54-7. CrossRef

Novikova OY, Bondarenko TP, Bozhok GA. Cryopreservation of multicellular spheroids derived from rabbit dermal papilla cells. Probl Cryobiol Cryomed. 2019; 29(2): 177. CrossRef

Novikova OY, Bozhok GA, Bondarenko TP. Effect of incubation with dimethyl sulfoxide on the mitotic cycle of cell culture of rabbit dermal papilla. RABM [Internet]. 2019 Oct 5 [cited 2025 Jan 30]; 5: Pgs.6. Available from: https://www.hataso.com/journals%2Frabm%2Farticles%2F528 CrossRef

Novikova OY, Sidorenko OS, Bozhok GA, Bondarenko TP. Cryopreservation effect on chromogranin A expression in neonatal pig adrenal cell culture. Probl Cryobiol Cryomed. 2019; 29(4): 344-53. CrossRef

Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007; 8: 839-45. CrossRef

Perry BC, Zhou D, Wu X, et al. Collection, cryopreservation, and characterization of human dental pulpderived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods. 2008; 14(2):149-56. CrossRef

Pilbauerova N, Schmidt J, Soukup T, et al. The effects of cryogenic storage on human dental pulp stem cells. Int J Mol Sci [Internet]. 2021 Apr 23 [cited 2025 Jan 30]; 22(9): 4432. Available from: https://www.mdpi.com/1422-0067/22/9/4432 CrossRef

Plaksina EM, Sidorenko OC, Bozhok GA. Cryopreservation of multicellular spheroids derived from newborn piglet adrenal glands. Probl Cryobiol Cryomed. 2017; 27(4): 322-33. CrossRef

Platel JC, Gordon V, Heintz T, Bordey A. GFAP-GFP neural progenitors are antigenically homogeneous and anchored in their enclosed mosaic niche. Glia. 2009; 57: 66-78. CrossRef

Prickett RC, Marquez-Curtis LA, Elliott JA, McGann LE. Effect of supercooling and cell volume on intracellular ice formation. Cryobiology. 2015; 70(2):156-63. CrossRef

Rabow Z, Morningstar T, Showalter M, et al. Exposure to DMSO during infancy alters neurochemistry, social interactions, and brain morphology in long-evans rats. Brain Behav [Internet]. 2021 Apr 10 [cited 2025 Jan 30]; 11(5): e02146. Available from: https://onlinelibrary.wiley.com/doi/10.1002/brb3.2146 CrossRef

Raible DW, Eisen JS. Regulative interactions in zebrafish neural crest. Development. 1996; 122(2): 501-7. CrossRef

Raible DW, Eisen JS. Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development. 1994; 120: 495-503. CrossRef

Ross MH, Pawlina W. Histology: A text and atlas with correlated cell and molecular biology, 8th edition. Philadelphia: Lippincott Williams & Wilkins; 2018. 1072 р.

Schwarz S, Spitzbarth I, Baumgärtner W, et al. Cryopreservation of canine primary dorsal root ganglion neurons and its impact upon susceptibility to paramyxovirus infection. Int J Mol Sci [Internet]. 2019 Feb 28 [cited 2025 Jan 30]; 20(5): 1058. Available from: https://www.mdpi.com/1422-0067/20/5/1058 CrossRef

Sidorenko OS, Bozhok GA, Legach EI, Gurina TM. Study of possibility to obtain and cryopreserve adrenal cell primary culture of newborn piglets. Probl Cryobiol Cryomed. 2011; 21(1); 58-67. Full Text

Sieber-Blum M, Grim M, Hu YF, et al. Pluripotent neural crest stem cells in the adult hair follicle. Dev Dyn. 2004;231(2): 258-69. CrossRef

Silani V, Pizzuti A, Strada O, et al. Cryopreservation of human fetal adrenal medullary cells. Brain Res. 1988; 454 (1-2): 383-6. CrossRef

Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med. 2021; 10(5):681-93. CrossRef

Toma JG, Akhavan M, Fernandes KJ, et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol. 2001; 3(9): 778-84. CrossRef

Trumble TE, Whalen JT. The effects of cryosurgery and cryoprotectants on peripheral nerve function. J Reconstr Microsurg. 1992; 8(1): 53-8; discussion 59-60. CrossRef

Woods EJ, Perry BC, Hockema JJ, et al. Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology. 2009; 59(2): 150-7. CrossRef

Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: a concise review. Int J Mol Sci [Internet]. 2019 Mar 6 [cited 2025 Jan 30]; 20(5): 1132. Available from: https://www.mdpi.com/1422-0067/20/5/1132 CrossRef

Yamatoya K, Nagai Y, Teramoto N, Kang W, Miyado K, Nakata K, Yagi T, Miyamoto Y. Cryopreservation of undifferentiated and differentiated human neuronal cells. Regen Ther. 2022; 19: 58-68. CrossRef

Yu H, Kumar SM, Kossenkov AV, et al. Stem cells with neural crest characteristics derived from the bulge region of cultured human hair follicles. J Invest Dermatol. 2010; 130(5): 1227-36. CrossRef

Yuan C, Gao J, Guo J, Bai L, et al. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes. PLoS ONE [Internet]. 2014 Sep 19 [cited 2025 Jan 30]; 9(9): e107447. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107447 CrossRef

Zalewski AA, Fahy GM, Azzam NA, Azzam RN. The fate of cryopreserved nerve isografts and allografts in normal and immunosuppressed rats. J Comp Neurol. 1993; 331(1): 134-47. CrossRef

Zhang C, Deng Y, Dai H, et al. Effects of dimethyl sulfoxide on the morphology and viability of primary cultured neurons and astrocytes. Brain Res Bull. 2017; 128: 34-9. CrossRef

Zhang S, Zhou Y, Xian H, et al. Nerve regeneration in rat peripheral nerve allografts: An assessment of the role of endogenous neurotrophic factors in nerve cryopreservation and regeneration. Eur J Neurosci. 2022; 55(8):1895-916. CrossRef

Zhou H, Yang H, Lu L, et al. A modified protocol for the isolation, culture, and cryopreservation of rat embryonic neural stem cells. Exp Th er Med [Internet]. 2020 Oct 6 [cited 2025 Jan 30]; 20(6): 156. Available from: https://www.spandidos-publications.com/10.3892/etm.2020.9285 CrossRef

Zhu Z, Qiao L, Zhao Y, Zhang S. Optimal freezing and thawing for the survival of peripheral nerves in severed rabbit limbs. Int J Clin Exp Pathol. 2014; 7(11): 7801-5. PubMed

Zhurova M, Woods EJ, Acker JP. Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage. Cryobiology. 2010; 61(1): 133-41. CrossRef

Downloads

Опубліковано

2025-09-07

Як цитувати

Bozhok, G., Ustychenko, V., Sydorenko, O., Bozhkova, Y., Alabedalkarim, N., Pakhomov, O., Vvedenskyi, D., Shatillo, A., Bondarenko, T., & Legach, Y. (2025). Кріоконсервування клітин-похідних нервового гребеня. Проблеми кріобіології і кріомедицини, 35(1), 3–13. https://doi.org/10.15407/cryo35.01.003

Номер

Розділ

Оглядові статті